
A Hypothesis Testing Approach to Sharing Logs with Confidence
Yunhui Long

ylong4@illinois.edu

University of Illinois at

Urbana-Champaign, USA

Le Xu

lexu1@illinois.edu

University of Illinois at

Urbana-Champaign, USA

Carl A. Gunter

cgunter@illinois.edu

University of Illinois at

Urbana-Champaign, USA

ABSTRACT
Logs generated by systems and applications contain a wide variety

of heterogeneous information that is important for performance

profiling, failure detection, and security analysis. There is a strong

need for sharing the logs among different parties to outsource the

analysis or to improve system and security research. However,

sharing logs may inadvertently leak confidential or proprietary

information. Besides sensitive information that is directly saved

in logs, such as user-identifiers and software versions, indirect

evidence like performance metrics can also lead to the leakage of

sensitive information about the physical machines and the system.

In this work, we introduce a game-based definition of the risk

of exposing sensitive information through released logs. We pro-

pose log indistinguishability, a property that is met only when the

logs leak little information about the protected sensitive attributes.

We design an end-to-end framework that allows a user to iden-

tify risk of information leakage in logs, to protect the exposure

with log redaction and obfuscation, and to release the logs with a

much lower risk of exposing the sensitive attribute. Our framework

contains a set of statistical tests to identify violations of the log

indistinguishability property and a variety of obfuscation methods

to prevent the leakage of sensitive information. The framework

views the log-generating process as a black-box and can therefore

be applied to different systems and processes. We perform case

studies on two different types of log datasets: Spark event log and

hardware counters. We show that our framework is effective in

preventing the leakage of the sensitive attribute with a reasonable

testing time and an acceptable utility loss in logs.

CCS CONCEPTS
• Security and privacy → Domain-specific security and pri-
vacy architectures.

KEYWORDS
indistinguishability; hypothesis test; log obfuscation; privacy

ACM Reference Format:
Yunhui Long, Le Xu, and Carl A. Gunter. 2020. A Hypothesis Testing

Approach to Sharing Logs with Confidence. In Proceedings of the Tenth
ACM Conference on Data and Application Security and Privacy (CODASPY

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7107-0/20/03. . . $15.00

https://doi.org/10.1145/3374664.3375743

’20), March 16–18, 2020, New Orleans, LA, USA. ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3374664.3375743

1 INTRODUCTION
Logs generated by systems and applications contain a wide variety

of information such as timestamps, the size of input and output

files, and CPU utilization. This information plays an important

role in scientific research and analysis of production systems in

industry. Although some of these analyses can be done internally,

there has been a growing need to share logs with external analysts.

For example, researchers rely on logs from real-life production

systems to understand the workload and performance of these

systems, and large companies hope to share this information so

that they can guide academic work to be more relevant to their

technical challenges [33]. On the other hand, small companies often

outsource their log analysis process to third-party service providers

such as Anomaly (anomaly.io) and Anodot (anodot.com) to benefit

from a larger log-database and cutting-edge technologies.

Despite the increasing need for log sharing, companies are often

unwilling to share their logs due to concerns about information

exposure. Indeed, logs have the potential of revealing sensitive infor-

mation about the system or program that generated it, ranging from

applications, algorithms, to software and hardware configurations.

For example, releasing traces of real-life production workloads

may result in the leakage of information about new products if the

prototypes of these products are using the same infrastructure [33].

Some sensitive information is directly saved into logs and can be

protected by sanitization or anonymization. For example, several

attempts have been made to anonymize IP addresses in network

traces [48, 49]. However, log anonymization and sanitization is

not enough to prevent the leakage of all the sensitive information.

Since the metrics stored in logs are highly correlated with various

properties of the system and hardware, seemingly nonsensitive

metrics may reveal sensitive information. For instance, it is possible

to infer information about a physical machine (e.g. the amount

of RAM, the number of cores) if both workload information and

performance metrics are released.

Differential privacy [12] has been shown to be effective in pre-

venting side-channel leakages from timing and message sizes [50],

but these studies only cover a portion of the information that is

included in a log file. Meanwhile, achieving differential privacy on

high-dimensional complex data with a reasonable amount of noise

remains an open research problem [51].

In contrast to the extensive research on log anonymization, there

is a lack of a systematic understanding of the sensitive information

that can be indirectly inferred from a log file. Yet, this indirect leak-

age has been a great concern of companies in terms of releasing

https://doi.org/10.1145/3374664.3375743
https://doi.org/10.1145/3374664.3375743
anomaly.io
anodot.com

production logs. To address this concern, researchers at Google pro-

posed several obfuscation techniques [33], including sampling, scal-

ing, and aggregation, to prevent the information leakage. However,

there are two key limitations in these techniques. First, the obfusca-

tion techniques are designed specifically to protect the traces from

Google production clusters. The effectiveness of these techniques

need to be generalized to different protection criterion, different

systems, and different types of log files. Second, due to the lack

of a clear protection criterion, there is no quantitative analysis of

the effectiveness of the obfuscation techniques. Consequently, it is

challenging for a user to understand the goal of each obfuscation

techniques and to adapt them for their own systems.

Our Contributions. This paper aims to provide a framework that

enables general-purpose log sharing under user-specified protec-

tion requirements. This framework consists of three major compo-

nents: protection specification, indistinguishability tests, and log

obfuscation.

First, we formalize the risk of revealing sensitive information

during log sharing under the definition of log indistinguishability.
We then enable users (log producers) to specify some sensitive

attributes to be protected. We model the process of inferring the

sensitive attributes from logs as a distinguishing game between

the adversary and the user. The log indistinguishability property is

met only if the adversary gets little or no advantage over random

guessing in the distinguishing game. Log indistinguishability pro-

vides a formal protection criterion for our log-sharing framework.

The remainder of the framework is designed around checking and

ensuring this criterion in shared logs.

Second, we propose a set of indistinguishability tests to check

whether a log file satisfies log indistinguishability. Similar to the

randomness tests for Psuedo-Random Number Generators (PRNG),

we use hypothesis tests to identify statistical patterns that may leak

the sensitive information in a log file. We design a variety of tests

to cover different data types.

Third, we propose log obfuscation techniques to help mitigate

the information leakage identified by the indistinguishability tests.

We design an iterative process between testing and obfuscation

to help users strike a balance between protection of the sensitive

information and the information loss incurred by obfuscation.

Finally, we evaluate our log-sharing framework under two case

studies on different types of log datasets: Spark event logs and

hardware performance counters. We show that our framework is

effective in preventing the leakage of the sensitive attribute with a

reasonable testing time and an acceptable information loss in logs.

Our contributions can be summarized as follows:

• We introduce a game-based definition of the risk for exposing

sensitive information through log sharing.

• We design an end-to-end framework that allows users to

identify risk of information leakage in logs, to protect the

exposure with log obfuscation, and to release the logs with

a much lower risk.

• With two case studies, we show that our framework is effec-

tive in preventing the leakage of the sensitive attribute with

a reasonable testing time and an acceptable utility loss.

2 BACKGROUND
In this section, we briefly introduce the definition of differential pri-

vacy, its application to side channel protections, and the hypothesis

tests that are used in this paper.

2.1 Differential Privacy
Proposed by Dwork et al., differential privacy [12] formalizes the

vague concept of privacy into a provable property. We recall the

definition of differential privacy.

Definition 2.1 ((ε,δ)-Differential Privacy). A randomized algo-

rithm M is (ε,δ)-differentially private if for all S ⊆ Range(M)

and for any neighboring inputs x1 and x2: Pr[M(x1) ∈ S] ≤

exp(ε) Pr[M(x2) ∈ S] + δ . Specifically, when δ = 0, M is ε-
differentially private.

Differential privacy has been widely applied in dataset privacy.

In most cases, one considers two datasets that differ by only one

record as neighboring inputs, and differential privacy guarantees

that no adversary can achieve a high advantage in inferring the

membership of any record [20].

2.2 Hypothesis Tests
A statistical hypothesis is a testable statement about a process that

is modeled via a set of random variables. The null hypothesis, de-
noted asH0, is the statistical hypothesis we want to reject, and the

alternative hypothesis, denoted asHA, is the complement of the null

hypothesis. A hypothesis test is the process of either accepting or
rejecting the null hypothesis based on the observed data samples. A

two-sample test is a hypothesis test performed on two data samples.

For example, suppose d1 is a data sample obtained from distribu-

tion D1, and d2 is a data sample obtained from distribution D2. In

a two-sample test, the null hypothesis (H0) could be D1 = D2, and

the alternative hypothesis (HA) could be D1 , D2. By performing

the hypothesis test, we would like to determine whether d1 and d2
come from the same distribution.

The performance of a hypothesis test is evaluated by two types

of errors. A type I error occurs if the test incorrectly rejects the

null hypothesis, and a type II error occurs if the test incorrectly

accepts the null hypothesis. In most hypothesis tests, it is more

important to control type I errors. Therefore, a user would specify a

significance level α (e.g. α = 0.01 or α = 0.05). The test rejectsH0 if

and only if the p-value, which is the output of the testing algorithm,

is smaller than α . A correct hypothesis test needs to guarantee

that, for all 0 ≤ α ≤ 1, we have Pr[p ≤ α | H0] ≤ α . The power
(1 − β) of a hypothesis test is the probability that the test correctly

rejects the null hypothesis. Under the same significance levelα , tests
with stronger power are more desirable because they have lower

type II errors. Hypothesis tests can be divided into two categories:

parametric tests and non-parametric tests. Parametric tests assume

that the tested samples come from a known distribution, while

non-parametric tests do not rely on this assumption.

Hypothesis tests are useful tools in statistical analysis, and a large

number of hypothesis tests have been proposed to solve different

problems. In this section, we briefly introduce three hypothesis

tests that are used in this paper: χ2 two sample tests, kernel two

sample tests, and differential privacy tests. Both χ2 tests and kernel

tests have the null hypothesis that two data samples come from

the same distribution. χ2 tests are suitable for categorical data or
binned numerical data, while kernel tests are often performed on

multidimensional numerical data. Differential privacy tests check

whether an algorithm is differentially private under a given privacy

budget ε .

Pearson’s Chi-Squared Two-Sample Tests. APearson’s chi-squared

two-sample test (χ2 test) [24] is performed on categorical data or

binned numerical data. It tests the null hypothesis that the two

samples come from the same distribution. The test is based on the

assumption that the number of points in each bin should be similar

if the null hypothesis is true.

Kernel Two-Sample Tests. The null hypothesis of a kernel two-
sample test [16] is that the two samples come from the same distri-

bution. The test statistic, maximum mean discrepancy (MMD) [38],

is the largest difference in expectations over the output of a class

of kernel functions.

Differential Privacy (DP) Tests. Given a mechanismM , two neigh-

boring inputs x ,y, and an output set S , a DP test [10] checks if

M is ε-DP. Suppose p1 = Pr[M(x) ∈ S], p2 = Pr[M(y) ∈ S]. The
statistical hypotheses to be tested are

H0 : p1 ≤ eε · p2, HA : p1 > eε · p2.

The p-value of the test is calculated based on the number of times

M(x) and M(y) falls in S . The null hypothesis is rejected if M(x)
falls in S with a much higher frequency thanM(y).

3 LOG INDISTINGUISHABILITY
In this section, we formalize the risk of leaking sensitive information

through shared logs. First, we introduce the log sharing problem

and the adversary model used in this paper. Then, we propose a

game-based definition to describe the risk of leaking the sensitive

information. Finally, we provide an overview for our testing-based

log obfuscation framework.

3.1 Problem Statement
Problem Setup. Suppose P is a log-generating process, and l is

the log file produced by P . We study what information can be

inferred about P by observing l . We assume l is parsed into a mul-

tidimensional time sequence vector consisting of numerical and

categorical data. There have been extensive prior studies on parsing

unstructured logs into structured sequential data [11, 17].

The sensitive information of P can refer to any information that

is related to the computation process and not directly stored in the

log file. This information may include software and hardware con-

figurations, information about the physical machines (e.g. number

of cores, the amount of RAM), and workload information such as

algorithms and hyperparameters. In practice, the information that

needs to be protected varies among applications. Therefore, we

allow the users to specify the sensitive information that needs to be

protected. The remaining information about P is considered to be

nonsensitive and safe to release. The sensitive information can be

a combination of different attributes of P . However, for simplicity,

we view all the sensitive information as a single sensitive attribute,
denoted by X , and X can be a vector of different configurations. Let

C = {xi | i ∈ Z
+, i ≤ M} be a set of potential values for X known

by the adversary. We call C the candidate set of X .

Adversary Model. We consider an external adversary that does

not collocate with the target program P and has no control over

P. The adversary can only infer information by analyzing the log

files shared by the users, and users can sanitize or remove any

sensitive information before sharing the log files. We also assume

that the adversary has access to all the nonsensitive information

about P and can reproduce the experiment on similar hardware and

software environments.

An Example. Suppose P is the process of training a deep learning

model on a Spark [1] system, and l is a parsed log file produced

during the training process. The owner wants to share the log

file but is concerned that it may reveal the number of cores of the

physical machines used to train the models. In this case, the number

of cores is the sensitive attributeX while other information, such as

the training algorithm and software configurations, is nonsensitive.

We assume that the adversary knows a set of possible values for

the number of cores (e.g.C = {1, 2, 4, 8}). In addition, the adversary

has access to a variety of machines with different number of cores,

the same system environment as the user (i.e. the Spark system),

and the training algorithm used by the user (program P). The goal
of the adversary is to infer the number of cores of the machines. To

gather information for the inference, the adversary can generate

multiple log files (l) by running the process P on machines with

different number of cores. This strong adversary model allows us to

provide protection against adversaries with different background

knowledge in practice.

3.2 Log Indistinguishability
In this section, we propose a game-based definition to formalize

the inference process. Based on this definition, we discuss the re-

quirements for preventing the leakage of the sensitive information.

The Distinguishing Game. Given a process P and a candidate set

C , we model the problem of inferring the sensitive attribute as the

following distinguishing game between the user and the adversary:

(1) The user picks a value x ∈ C uniformly at random and

generates a log file l .
(2) The user invokes the adversary to obtain a guess x ′ =

A(l ,C).
(3) The attack succeeds if x ′ = x . Otherwise, the attack fails.

In the distinguishing game, the adversary aims to infer the sen-

sitive attribute that is used to produce the log file l . She has access
to the candidate set C , which contains a set of potential values for

the sensitive attribute. The adversary obtains a guess x ′ ∈ C based

on some inference strategy A. The attack succeeds only if x ′ = x .

Log Indistinguishability. A program P is γ -log indistinguishable
onC if, for allCpair ⊆ C with |Cpair | = 2, no adversary can succeed

the above distinguishing game with probability greater than (1 +

γ)/2 on Cpair.

Log indistinguishability guarantees that no adversary can get

a significant advantage over a random guess in inferring the sen-

sitive attribute among any pair of possible values. Therefore, the

protection holds even when the adversary is able to eliminate some

Figure 1: Framework Overview

possible values inC . Specifically, when γ = 0, no inference strategy

outperforms random guessing in winning the distinguishing game,

indicating that the log file l leaks no information about the sensitive

attribute.

3.3 Framework Overview
Figure 1(a) presents an overview of the log-sharing process, which

is inspired by software testing process. In software testing, a set of

test modules are designed to identify violations of user-specified

requirements. Developers use the test modules to identify bugs in

the software. The software is ready to be deployed only if all tests

are passed. This process may involve several iterations between

implementation and testing. Although software testing cannot guar-

antee the software to be bug-free, it is the major approach to detect

implementation errors and software defects.

Similarly, our testing-based framework aims to provide users an

efficient and effective approach to the identification and protection

of information leakage in log files. The framework checks an input

log file against a protection criterion specified by the user. If the

log file fails to meet the criterion, the framework would provide

the user with a set of applicable obfuscation methods. The user

decides whether the obfuscated log incurs too much information

loss and updates the protection specification accordingly. The log

can be confidently shared when it passes all the tests. Similar to

software testing, indistinguishability testing cannot guarantee that

shared log leaks no information. However, it is a practical method

to provide confidence that sharing the log has low risk. Moreover,

the framework views the log-generating process as a black-box and

can therefore be applied to different systems and processes. Below,

we briefly introduce each stage in the log-sharing framework:

(1) Protection Specification. A user specifies the sensitive at-

tributeX and the candidate setC for a log-generating process

P . The goal of the protection is to have P achieve γ -log in-

distinguishability on C given a small constant γ .
(2) Indistinguishability Testing (Section 4). A set of indis-

tinguishability tests are performed to identify violations of

the protection criterion.

(3) Log Obfuscation (Section 5). The log needs to be obfus-

cated if it fails any of the indistinguishability tests. We study

a range of existing obfuscation methods and propose novel

methods to protect the sensitive attribute.

(4) Log Sharing. When all the indistinguishability tests are

passed, the user can share the log under a much lower risk

of exposing the sensitive attribute.

4 INDISTINGUISHABILITY TESTS
In this section, we introduce a set of indistinguishability tests to

identify potential violations of γ -indistinguishability. First, we in-
troduce some general principals for designing indistinguishability

tests. Then, we propose four types of tests that cover different in-

formation in logs. Finally, we introduce methods to interpret and

combine the results from different tests.

4.1 A Testing-Based Approach
Challenges in Obtaining Theoretical Guarantee. To obtain the

theoretical guarantee of γ -log indistinguishability, one could either

(i) prove that all the metrics influenced by the sensitive attribute are

removed or (ii) show that the obfuscation methods have effectively

hidden all the influence of the sensitive attribute. However, both

approaches are challenging in practice.

For the first approach, it is difficult to identify all metrics that are

influenced by the sensitive attribute. Moreover, there are complex

correlations between the capacity of physical machines, software

and hardware configurations, and performance metrics. Therefore,

obtaining a theoretical proof on the influence of a software or

hardware setting is generally impractical. Theoretical analysis of

a system usually relies on the assumptions that the data obtained

from the system follow a known distribution (e.g. Gaussian distribu-

tion) [26]. However, many studies suggest that these assumptions

do not hold in practice [18, 25].

For the second approach, most obfuscation methods suffer from

the lack of certainty—one cannot prove the effectiveness of com-

monly used obfuscation mechanisms [33]. Meanwhile, obfuscation

methods that do provide certainty for protection, such as differen-

tial privacy, often reduces the accuracy in log analysis by adding

too much noise.

A Testing-Based Approach. Although obtaining theoretical guar-

antee is challenging, it is feasible to identify patterns in a log file

that violate γ -log indistinguishability. In this section, we take a

hypothesis testing approach to understand the risk of inadvertently

revealing the sensitive attribute by sharing log files. We design a

set of indistinguishability tests that provide a user with an empiri-

cal understanding on the risk of leaking the sensitive attribute by

sharing the log files. The tests do not modify the log files. Based on

the test results, a user can decide whether it is necessary to redact

or obfuscate any metrics before releasing the logs.

This testing-based approach is similar to running a randomness

test for a Pseudo-Random Number Generator (PRNG). The ran-

domness test consists of a set of hypothesis tests that identify non-

random patterns in psuedo-random sequences. If the randomness

test fails, there is likely to be flaw in the design or implementation

of the PRNG. Meanwhile, passing the randomness test only gives a

user higher confidence in the quality of a PRNG. There is no guaran-

tee for randomness even if the sequences pass all randomness tests.

Similarly, passing the indistinguishability tests do not theoretically

guarantee γ -log indistinguishability. However, it gives the user a
higher confidence (quantified by γ) that the sensitive attribute is
unlikely to be leaked through the released log files.

4.2 Steps of Indistinguishability Testing
The goal of indistinguishability testing is to identify violations of γ -
log indistinguishability. Therefore, the null hypothesis (H0) under

test is that P is γ -log indistinguishable on a candidate setC . Associ-
ated with this null hypothesis is the alternative hypothesis (HA)

that P is not γ -log indistinguishble. The testing process consists

of three steps: (i) generation of test logs, (ii) selection of mapping

functions, and (iii) performing hypothesis tests.

Step 1: Generate Test Logs. The first step is to obtain a set of logs

to perform the tests on. For each sensitive attribute xi ∈ C , a set

of n parsed log files Li =
{
l
(k)
i

��� k ∈ Z+,k ≤ N
}
are generated by

running the process for N times.

Step 2: Select Mapping Functions. Due to the high dimensionality

of each parsed log file l , directly performing hypothesis tests on

l requires an impractically large number of samples. Therefore, a

mapping function f : l 7→ u is used to map l to a lower-dimensional

vector u on which hypothesis tests can be efficiently performed.

For example, the mapping function f
length

returns the length of a

log file (i.e. number of measurements over time). To improve test

coverage, one should select a variety of mapping functions that

cover different aspects of the log.

Step 3: Perform Hypothesis Tests. Finally, for each pair of xi1 ,xi2 ∈
C , the user obtains two groups of outputs:

Ui1 =
{
f
(
l
(k)
i1

) ��� l (k)i1
∈ Li1

}
, Ui2 =

{
f
(
l
(k)
i2

) ��� l (k)i2
∈ Li2

}
. (1)

A hypothesis test T is performed on Ui1 and Ui2 to determine

whether the output of the mapping function f is sufficient to dis-

tinguish between xi1 and xi2 .

Each indistinguishability test is a combination of a mapping

function f and a hypothesis testT . In the following subsections, we

propose a test suite consisting of different pairs of (f ,T) that cover
various aspects of a log file. The test suite can be used similarly to the

randomness test suite [34]. Each test returns an independent result

on whether there is a risk of information leakage. In Section 4.4, we

propose an analytical approach that combines the test results and

leads to a conclusion on the risk of revealing the sensitive attribute.

4.3 Designing Indistinguishability Tests
An indistinguishability test consists of two parts: a mapping func-

tion f that extracts information from an parsed log file l and a

hypothesis test T that checks whether the extracted information

leaks the sensitive attribute. In the following subsections, we pro-

pose four different types of mapping functions f and associate

them with different hypothesis tests T . Specifically, when γ = 0,

we perform kernel tests [16] and χ2 tests [24] on the outputs of f .
When γ > 0, we connect γ -indistinguishability with ε-differential
privacy and perform differential privacy tests [10].

4.3.1 Mapping Functions. There are infinite number of functions

that could extract useful information from a parsed log file, and

it is impractical to design a “complete” set of mapping functions

to cover all possible information leakage. Therefore, to strike a

balance between the efficiency and completeness, we propose a set

of mapping functions F that meets two criteria: (i) each mapping

function f ∈ F returns a low-dimensional numerical/categorical

vector; (ii) different mapping functions cover different aspects of l .
The first criterion ensures that hypothesis tests can be efficiently

performed on the output of f , while the second criterion reduces

test redundancy and improves test completeness. This idea is similar

to performing a set of randomness tests, where each test checks a

different statistical pattern in a random sequence.

Length. The length of a parsed log file l refers to the number

of measurements that have been recorded in the log. To extract

this information for testing, we define a length mapping function

f
length

that returns the length of an input log file l .

Frequency (Categorical). Since there are few hypothesis tests

that support comparison between multi-dimensional categorical

vectors, we independently compare each categorical metric in l . A
frequency mapping function f

freq, j,t,w returns the count of each

value for the j-th categorical metric in the time window [t , t +
w). We use a set of frequency mapping functions to extract the

information from a sequence of non-overlapping time windows:

F
freq, j,w =

{
f
freq, j,t,w | t = kw,k ∈ N,k < L/w

}
, where L is the

length of the log file. The output of each mapping function f ∈

F
freq, j,w is a frequency vector containing the count for each value

of the categorical metric. The window size w can be adjusted to

balance between testing time and testing strength. A smaller w
allows the user to identify minor differences between two sets of

logs, but requires more tests to be performed. When w = 1, we

perform one test on each measurement in l .

Moving Average (Numerical). When analyzing numerical metrics,

we combine them into a multi-dimensional time series, and apply

time series analysis techniques. The moving average technique re-
places each element in a time series with the average of surrounding

elements to eliminate local variations. Similarly, given a series of

numerical metrics, we propose a moving average mapping function
favg,t,w that calculates each metric’s average value in the time win-

dow [t , t +w). We use a set of moving average mapping functions

to extract the information from a sequence of non-overlapping

time windows: Favg,w =
{
favg,t,w | t = kw,k ∈ N,k < L/w

}
. The

output of each mapping function f ∈ Favg,w is a multi-dimensional

numerical vector whose dimension equals to the number of numer-

ical metrics in the log.

Moving Difference (Numerical). Local variations in a time se-

ries could also leak sensitive information. A common technique

to study the local variation is to calculate the difference between

consecutive measurements. Therefore, we propose a moving differ-
ence mapping function f

diff,t that returns the difference between

a measurement at time t + 1 and a measurement at time t for all
the numerical metrics. We use a set of moving difference map-

ping functions to extract the difference between each consecutive

measurements: F
diff
=

{
f
diff,t | t ∈ N, t < L − 1

}
. Similar to the

moving average function, the output of each mapping function

f ∈ F
diff

is a multi-dimensional numerical vector whose dimension

equals to the number of numerical metrics in the log. When L is

large, performing tests on the output of each function in F
diff, j can

be time-consuming. Therefore, we pick s mapping functions from

F
diff

uniformly at random, and obtain F
diff,s ⊆ F

diff
.

4.3.2 Considerations for Choosing Hypothesis Tests. For each map-

ping function f , we obtain two sets of outputs Ui1 and Ui2 (E.q. 1)
that are associated with sensitive attributes xi1 and xi2 respectively.
The next step is to select a two-sample hypothesis test T that takes

Ui1 ,Ui2 as inputs and identifies violations of γ -log indistinguisha-
bility. The hypothesis test T should meet two criteria:

(1) Correctness: If the log-generating process P is γ -log indistin-

guishable, the probability of rejecting the null hypothesis

under significance level α should be no greater than α .
(2) Power: Among all known tests that satisfy the correctness

criterion, the test with the strongest power should be se-

lected.

The correctness criterion minimizes the type I error—the proba-

bility of rejecting log files that satisfy γ -indistinguishability. This
criterion guarantees usability of the test. In software testing, if a

unit test often fails on correct code, its result will be ignored by

developers. Similarly, if a hypothesis test has a large type I error, the

test result becomes unaccountable. To guarantee the correctness

criterion, the null hypothesis of T (H0) needs to be a necessary

condition for γ -log indistinguishability (i.e. H0 should always hold

when P satisfies γ -log indistinguishability).
The power criterion minimizes the probability of accepting log

files that violate γ -indistinguishability. If the process P passes a

test with stronger power, the sensitive attribute is less likely to be

leaked.

4.3.3 Tests of 0-Log Indistinguishability. When P is 0-log indistin-

guishable on {xi1 ,xi2 }, the outputsUi1 ,Ui2 of anymapping function

should have the same distribution. Otherwise, the difference be-

tweenUi1 andUi2 would not allow the adversary to gain advantage

in distinguishing between xi1 and xi2 . Therefore, given two samples

Ui1 ,Ui2 , the null hypothesis under test is

H0 : Ui1 ,Ui2 have the same distribution.

There are several hypothesis tests that can check whether two

samples have the same distribution, such as the t-test [40], the
KS test [39], χ2 test [24], and kernel two-sample test [16]. Some

of these tests, such as t-test, assume that the two samples come

from a known distribution (e.g. normal distribution). Since these

assumptions do not always hold in practice [25], we choose among

non-parametric tests that do not rely on any assumptions about the

underlying distribution of the samples. Specifically, we use χ2 tests
for categorical metrics and kernel two-sample tests for numerical

metrics because they are shown to be more powerful than other

tests that serve the same purpose [16]. Additionally, since kernel

two-sample tests support comparisons between multi-dimensional

numerical vectors, the outputs from multiple numerical metrics can

be tested together. This approach could identify potential informa-

tion leakage from the correlation between different metrics.

Table 1 shows the association between different mapping func-

tions and the hypothesis tests to be performed on the outputs

of these functions. Based on the types of mapping functions, we

name the indistinguishability tests length test, frequency test,
moving average test, and moving difference test.

4.3.4 DP Test. If the user is willing to tolerate a small amount of

information loss when releasing the log, he could adjust the risk of

F Size of F Output Format Test
Length 1 Integer Kernel Test

Frequency ⌈L/w⌉ Count χ2 Test

Moving Average ⌈L/w⌉ Numerical vector Kernel Test

Moving Difference s Numerical vector Kernel Test

Table 1: Mapping Functions in Indistinguishability Tests.
revealing the sensitive attribute by setting the constant γ . However,
when γ > 0, the tests in Section 4.3.3 are no longer applicable

becauseUi1 andUi2 could come from slightly different distributions.

Hence, we use DP tests [10] to check γ -log indistinguishability with
γ > 0. Consider a mechanism MP,f : x 7→ u consisting of two

steps: (i) generate a parsed log file l by running P with sensitive

attribute x ; (ii) compute the outputu = f (l). The following theorem
shows the connection between γ -indistinguishability and DP.

Theorem 4.1. If P is γ -indistinguishable on C , for all mapping
function f ,MP,f is ε-differentially private on any pair of xi1 ,xi2 ∈ C ,
where ε = log ((1 + γ)/(1 − γ)) .

Proof. Let p1 = Pr[MP,f (x1) = u] and p2 = Pr[MP,f (x2) = u].
Suppose an adversary guesses the sensitive attribute to be x1 if

p1 > p2, and x2 otherwise, then his probability of success pwin =
max(p1,p2)/(p1 + p2). If MP,f is not ε-differentially private, there

exists an output u so that max(p1/p2,p2/p1) > exp(ε). Since ε =
log((1 + r)/(1 − r)), we have pwin > (1 + γ)/2. □

Therefore, the indistinguishability test fails if the DP test fails

on any pair ofUi1 ,Ui2 generated by the mapping functions in Sec-

tion 4.3.1. DP tests are applicable to both categorical and numerical

data and can be performed on the outputs of all mapping functions.

However, since the DP test is an adapted form of binomial

tests [10], it is not as powerful as the tests listed in Section 4.3.3.

Consequently, there is a higher risk that the tests could incorrectly

accept log files that are not γ -indistinguishable. Adapting more

powerful statistical tests for DP and γ -log indistinguishability is

nontrivial and retained for future work.

4.4 Interpretation of Test Results
Similar to a randomness test suite [34], an indistinguishability test

suite consists of multiple tests that cover different aspects of a

log file. Each test has a unique mapping function f that extracts

some particular information from the log. Specifically, the mapping

functions either (i) belong to different mapping function sets F

(Table 1); or (ii) extract information from different sub-sequences in

l (e.g., mapping functions in Favg,w calculate the moving average

in different time windows). Based on these two differences, we

introduce two methods to combine multiple test results.

Combining Test Results over Different Sub-Sequences. Suppose
(p1,p2, . . . ,pk) is a sequence of p-values returned by performing

the same type of indistinguishability test on different sub-sequences

of the logs. Under the null hypothesis (i.e., the log-generating pro-

cess is γ -log indistinguishable), the p-values should be uniformly

distributed [7]. We use the Fisher’s method [13] to test the unifor-

mity of the p-values.

Combining Test Results over Different Mapping Function Sets. By
combining the results of tests performed on different sub-sequences,

we obtain one p-value associated with each mapping function

Figure 2: Testing-Based Log Obfuscation Framework

set. Since different mapping function sets focus on different met-

rics/statistics in the logs, each set represents a unique attack surface

for the adversary. For example, if the test associated with the length

mapping function fails, it is likely that the adversary could infer

the sensitive attribute based on the length of the log. Therefore,

the p-value associated with different mapping function sets should

be interpreted independently. If any of the p-value is smaller than

the significance level α , there is a risk of revealing the sensitive

attribute. Additionally, failed tests also indicate the statistics as-

sociated with the information leakage. In Section 5, we introduce

obfuscation methods to mitigate the risk identified by each test.

5 PROTECTIONS WITH LOG OBFUSCATION
In practice, companies often apply obfuscation techniques to hide

sensitive information in log. For example, Reiss et al. [33] proposed

log-obfuscation techniques for releasing the Google’s cluster traces.

However, their approach is limited by the lack of understanding

on the protection goal of each obfuscation technique. Therefore,

it is unclear whether these techniques are effective in hiding the

sensitive information and whether it is necessary to apply them

under a different system or a different protection goal.

In this section, we combine the indistinguishability tests pro-

posed in Section 4.3 with different obfuscation techniques. The

results of the tests suggest whether a specific obfuscation tech-

nique would be helpful in protecting the user-specified sensitive

attributes. Additionally, we find out that existing obfuscation tech-

niques are not sufficient to hide all the information identified by our

indistinguishability tests and propose two novel obfuscation tech-

niques: probability integral transformation and noise addition. By

combining these techniques, we propose an end-to-end framework

(Figure 2) to help users identify sources of potential information

leakage and mitigate it. Specifically, we use sampling to mitigate

leakage identified by length tests, generalization and suppression to

mitigate leakage identified by frequency tests, and aggregation to

mitigate leakage identified by moving difference tests. Meanwhile,

a moving average test could identify leakage from three possible

sources: (i) the magnitude of a numerical metric; (ii) the distribu-

tion (e.g. variation and skewness) of a numerical metric; (iii) the

correlations between different numerical metrics. Therefore, we

use three different obfuscation methods to mitigate the leakage

associated with each source: (i) sampling, (ii) probability integral

transformation; (iii) noise addition.

Sampling. Sampling refers to the process of selecting a subset of

measurements in a log file. For example, the user could release a

set of measurements uniformly sampled from the whole log file.

Generalization and Suppression. Generalization and suppres-

sion are often used to hide sensitive information in categorical

attributes [41]. They can be applied to categorical metrics when

information leakage is identified by a frequency test.

Scaling. Scaling could mitigate the information leakage from

the magnitude of a numerical metric. For example, in the released

Google cluster trace dataset, Reiss et al. [33] re-scaled the machine

capacity data to guarantee that the maximum observed value is 1.

Probability Integral Transformation. Suppose X is a random

variable with cumulative distribution function (cdf) FX . Probability

integral transformation (PIT) converts X to a different random

variable Y with cdf FY . It relies on the property that Z = FX (X)

follows a uniform distribution. Therefore, the random variable

Y = F−1Y (FX (X)) follows the distribution defined by FY .
Suppose S1, S2, S3 are three sets of measurements obtained under

sensitive attributes x1,x2,x3 respectively. To perform the obfusca-

tion, one needs to first estimates the empirical cdf Fmix of S1∪S2∪S3.
Then, for each set Si (i ∈ {1, 2, 3}), by applying PIT on each value

in Si , one obtains obfuscated measurements that follow the new

distribution defined by cdf Fmix. PIT mitigates the information leak-

age from the distribution of a numerical metric by ensuring that

the measurement taken under different sensitive attributes share

the same distribution.

Noise Addition. The key limitation of PIT is that it needs to

be independently applied to each numerical metrics. Hence, PIT

could not prevent information leakage from the correlation between

different attributes. For example, suppose two numerical metrics

m1 andm2 have a positive correlation. This correlation would be

retained after PIT. Therefore, if this correlation leaks the sensitive

attribute, one needs to add noise to both m1 and m2 to hide it.

We add Gaussian noise that follows the distribution N(0,σ 2), and

determined σ based on the result of the moving average test.

Aggregation. Failing of the moving difference test indicates that

the local variations in the numerical metrics might reveal the sen-

sitive attribute. Hence, one could use aggregation techniques to

prevent the leakage. For example, instead of revealing all the mea-

surements, one could calculate the average of a measurement over

a fixed-length time window. The aggregation technique eliminates

local variations, but preserves the trend of the metrics.

6 CASE STUDIES
In this section, we performed case studies on two log datasets: a

Spark [1] event log dataset and a hardware performance counter

(HPC) dataset collected byGanju et al. [14]. Similar to Google cluster

traces [33, 36], Spark event logs provides a variety of performance

counters and workload traces. These traces are extensively used to

perform performance analysis and modeling [21, 29] for different

purposes such as performance prediction, diagnosis and configura-

tion selection[2, 28, 43]. The HPC dataset contains measurements

Tests Length Test Frequency Test Moving Average Test Moving Difference Test

γ 0 0.2 0 0.2 0 0.2 0 0.2

p-values 0.81 0.75 0.89 1.00 0.64 1.00 0.62 1.00

Testing Time (s) <0.01 0.22 0.03 13.05 5.14 52.32 4.74 66.60

Table 2: Test Correctness and Performance Analysis on Spark Event Logs.

Tests Length Test Frequency Test Moving Average Test Moving Difference Test

γ 0 0.2 0.4 0 0.2 0.4 0 0.2 0.4 0 0.2 0.4

No Obfuscation <0.01 <0.01 <0.01 - - - - - - - - -

Sampling 0.99 0.77 0.90 0.93 1.00 1.00 <0.01 <0.01 <0.01 - - -

Sampling + Scaling 0.99 0.78 0.91 0.93 1.00 1.00 <0.01 <0.01 0.17 - - 0.69
Sampling + Scaling + PIT 0.99 0.79 0.93 0.93 1.00 1.00 0.27 1.00 1.00 1.00 1.00 1.00

Table 3: Effectiveness of Different Obfuscation Techniques on Spark Event Logs.

about hardware events on a computer system. These measurements

have been demonstrated to be useful in detecting malware [9], side-

channel attacks [8], and cryptomining behavior [42]. These two

case studies cover different data types and different correlations

between the sensitive information and the logged metrics.

We evaluated our framework from four aspects: the correctness

of the tests, the effectiveness of obfuscation, the risk under attacks,

and the utility of the obfuscated logs. Specifically, our evaluations

on the obfuscation techniques focused on the two novel techniques

proposed in this paper: probability integral transformation (PIT)

and noise addition. We also used sampling and scaling to mitigate

the information leakage. Our case studies did not cover generaliza-

tion, suppression, and aggregation.

6.1 Spark Event Log Dataset
Experimental Setup. Spark is an open-source distributed system

for large data analysis. A Spark application is automatically di-

vided into several stages, each consisting of multiple tasks that

can be executed in parallel. A Spark event log records informa-

tion about each individual task in a Spark application. We adapted

Spark trace analysis tool [29] to parse the event logs into structured

multidimensional sequential vectors, where each data point repre-

sents a different task. Each parsed log file contains 15 numerical

metrics and 4 categorical metrics
1
. The log-generating process

P was a Spark application for training a multi-layer perceptron

(MLP) model using the SparkML library. The training data were

randomly generated using the sklearn library. The training dataset
contained 10,000 records with 100 features and 2 classes. We consid-

ered hardware information as the sensitive attribute. Specifically,

we ran the same process P on two clusters of machines provided

by Emulab (emulab.net):

• Cluster 1: 10 Dell Poweredge R430 1U servers each with

two 2.4 GHz 64-bit 8-Core processors and 64GB RAM;

• Cluster 2: 10 Dell PowerEdge 2850s each with a single 3GHz
processor and 2GB RAM.

The protection goal was to prevent the adversary from correctly

guessing the cluster on which P was running.

On each cluster, we obtained 100 log files by repeatedly running

P under the same settings. L1 denotes the set of logs obtained on

1
A complete metric list is available on spark.apache.org/docs/latest/monitoring.html

Cluster 1, andL2 denotes the set of logs obtained on Cluster 2. Since

parallel tasks of the same job often share similar systemmetrics (e.g.

running time, I/O size), we randomly sampled 1 task per stage when

performing the moving average tests and the moving difference

tests to prevent test redundancy. The sampled time sequences have a

maximum length of 48. We set the window sizew = 1 for frequency

tests and moving average tests. All the tests were performed locally

on a laptop with single 2.7 GHz Intel Core i5 processor.

Correctness and Performance. Weperformed experiments to demon-

strate that the indistinguishability tests have low testing overhead,

and the tests could stably accept the null hypothesisH0 (i.e., P is γ -
log indistingsuihable) when H0 holds. An indistingusihability test

is correct only if it rejects the null hypothesis with a low probability

(Pr[p < α | H0] < α) when P satisfies γ -log indistinguishability.

To check the correctness of the tests, we performed the tests on

two groups of logs generated on the same cluster. Specifically, we

randomly divided L1 into two groups G1 and G2, each containing

50 parsed log files. We performed indistinguishability tests on G1

and G2 with the null hypothesis that G1 and G2 are γ -log indis-

tinguishable. We repeated the testing process for 10 times with

α = 0.01. In all the 10 repetitions, the log files passed the indistin-

guishability tests for both γ = 0 and γ = 0.2. Table 2 presents the

average p-values for each test.

Additionally, we evaluated the average testing time for each test

(Table 2). The total test time is around 10 seconds when γ = 0 and

around 2 minutes when γ > 0. When γ = 0, the tests took less time

because χ2 tests and kernel tests are more efficient than DP tests

on multi-dimensional data.

Testing-Based Obfuscation. We performed different obfuscation

techniques based on the test results and demonstrated that these

techniques could effectively reduce the risk of information leakage.

We evaluated the log-sharing framework on the two sets of logs

L1 and L2 obtained on different clusters. We followed the iterative

process shown in Figure 2: when the logs failed an indistinguishabil-

ity test, we applied obfuscation techniques and repeated the failed

tests; when the logs passed a test, we moved to the next test. The

logs could be shared after all tests are passed.

We applied three different obfuscation techniques. When the

length test failed, we sampled 3 parallel tasks per stage and dis-

carded measurements of remaining tasks in the log file. When the

emulab.net
spark.apache.org/docs/latest/monitoring.html

(a) Original (b) Scaled (c) Scaled + PIT

Figure 3: Analysis on Probability Integral Transformation (PIT).

moving average test failed, we scaled the numerical metrics based

on the following strategy: (i) we calculated the mediansm1 andm2

in L1 and L2 for each numerical metric; (ii) we scaled each numer-

ical metric in log Li by multiplying it with a constant ci =
m1+m2

2mi
.

This scaling strategy ensures that numerical metrics in L1 and L2

share the same median (
m1+m2

2
) while preserving the relative mag-

nitudes of these metrics. If the scaled logs still failed the moving

average tests, we further applied PIT to ensure that the metrics in

L1 and L2 share the same distribution (Section 5).

We performed indistinguishability tests with α = 0.01 under

three different settings: (i) γ = 0, (ii) γ = 0.2, and (iii) γ = 0.4. Based

on the definition of γ -log indistinguishability, the settings could

be translated into three levels of protection objectives against an

adversary trying to infer the sensitive attribute: (i) the adversary’s

performance should be equivalent to random guessing; (ii) the

attack accuracy should be lower than 0.6; (iii) the attack accuracy

should be lower than 0.8.

Table 3 presents the p-value of each test under different γ and

obfuscation techniques. The values in bold indicate that the obfus-

cated logs passed all tests (i.e., p > 0.01) and could be shared. When

γ = 0 and γ = 0.2, sampling, scaling, and PIT were required to

achieve the protection criteria. Meanwhile, when γ = 0.6, PIT was

not needed to ensure the protection criterion.

When no obfuscation was applied, logs generated on Cluster 1

and Cluster 2 had different length. Since machines in Cluster 1 have

more processors compared to machines in Cluster 2, they could

support more parallel tasks, which resulted in a larger log file. This

leakage was mitigated by sampling a subset of tasks per stage.

However, after sampling, the logs still leaked sensitive informa-

tion through the magnitude of numerical metrics. Since the same

job was divided into more parallel tasks on Cluster 1, tasks running

on Cluster 1 had shorter duration and smaller I/O size. An adversary

could use this information to infer the cluster on which the logs

were generated. Scaling was not sufficient to prevent the leakage

because the task metrics on Cluster 1 and Cluster 2 were different

not only in their magnitudes but also in the variation and skewness

of their distributions.

Figure 3 shows the distributions of executor run time (ms)
of Task 0 in Stage 0. Prior to the obfuscation (Figure 3a), the dis-

tributions were different in two aspects: (i) tasks on Cluster 1 had

shorter runtime than tasks on Cluster 2; (ii) runtime on Cluster 2

had a right-skewed distribution, indicating that there were more

stragglers (i.e., tasks with runtime larger than 1.5× the median run-

time). The scaled metrics (Figure 3b) shared similar magnitudes,

Attack Acc. # of Correct Ans.

MLP NN Length <10 10-15 16

No Obfuscation 1.00 1.00 1.00 0 0 100%

Sampling 0.95 1.00 0.55 0 27% 73%

Sampling + Scaling 0.58 0.65 0.55 0 27.5% 72.5%

Sampling +
0.43 0.55 0.55 0.5% 30.5% 69%Scaling + PIT

Table 4: Attack and Utility Analysis on Spark Logs.

but did not eliminate the stragglers on Cluster 2. Therefore, an

adversary could infer the sensitive information by identifying the

stragglers in the log file. After applying PIT (Figure 3c), the number

of stragglers increased on Cluster 1 and decreased on Cluster 2.

Since the two sets of obfuscated logs shared the same distribution,

an adversary could no longer infer the cluster on which the logs

were generated.

Risk under Different Attacks. We designed three different attacks

to verify the test results. We showed that an adversary could cor-

rectly infer the sensitive attribute when the tests failed. Moreover,

when the logs were obfuscated and passed the tests, the attack

accuracy dropped to around 0.5.

Specifically, we modeled an attack as a classification problem

with the parsed log files as input features and the cluster informa-

tion as class labels. We randomly divided L1 ∪ L2 into equal-sized

datasets Ltrain and Ltest each containing 50 parsed logs from

Cluster 1 and 50 parsed logs from Cluster 2. We assumed that an

adversary had access to the labels (i.e. cluster information) for logs

in Ltrain and wanted to predict the labels of logs in Ltest . In prac-

tice, an adversary could obtain Ltrain and their labels by running

P on her own machines, and Ltest represents the logs shared by

the users.

We trained three different attack classifiers: (i) a multi-layer per-

ceptron (MLP) model with 100 hidden units; (ii) a nearest neighbor

(NN) classifier; and (iii) a length classifier that predicts the clus-

ter label based on the length of a parsed log file. Table 4 shows

the attack accuracy on Ltest of the three attacks. Without obfus-

cation, all attacks achieved high accuracy. Sampling could only

protect against the length attack, and scaling could reduce the at-

tack accuracy to below 0.7. This result complies with our previous

test results for γ = 0.4. After PIT, all attack accuracy dropped to

around 0.5, indicating that the obfuscated logs were likely to satisfy

0-indistinguishability.

Utility of Obfuscated Logs. We demonstrated that the obfuscated

logs were still useful in helping users identify bottlenecks of the

system. We performed the analysis proposed by Ousterhout et

al [29] to study the utility of obfuscated logs. The goal of the analysis

is to identify performance bottlenecks in a system. It estimates how

long the application is blocked on a certain aspect of the system (e.g.

network, computation, I/O). To get a quantitative understanding

of the analysis results, we designed 16 questions that could be

answered based on the analysis results:

(1) What is the bottleneck of the system?

(2-4) Is blocked time on computation greater than 20%/50%/80%?

(5-7) Is blocked time on disk greater than 20%/50%/80%?

(8-10) Is blocked time on GC greater than 20%/50%/80%?

(11-13) Is blocked time on network greater than 20%/50%/80%?

(13-15) Is blocked time on stragglers (i.e., tasks with runtime larger

than 1.5× the median runtime) greater than 20%/50%/80%?

(16) What is the number of stragglers?

We performed the analysis for each l ∈ L1 ∪ L2, and compared

the answers obtained from original logs and obfuscated logs. Table 4

presents the number of questions that could be correctly answered

on the obfuscated logs. After obfuscation, the analysis process could

still correctly answer all the questions on around 70% of the ob-

fuscated log files. Among the 16 questions, the questions about

stragglers (Q13-Q16) were most likely to be influenced by the ob-

fuscation techniques. Since tasks on Cluster 2 had more stragglers

compared to tasks on Cluster 1, giving out accurate information

about the stragglers would inevitably leak information about the

clusters. Therefore, there is a trade-off between hiding the sensi-

tive information and retaining useful information in obfuscated

logs. Our testing-based framework provides a better understand-

ing on this trade-off by helping users intuitively understand the

effectiveness of different obfuscation techniques.

6.2 Hardware Performance Counter Dataset
Experimental Setup. In this case study, we studied the risk asso-

ciated with sharing HPC datasets. For example, suppose a small

company wants to detect whether its employees have been us-

ing the company resources for covert cryptomining. The company

could outsource this detection to a third-party service by sharing its

HPCs. However, the company might be concerned about leaking in-

formation about the security vulnerabilities of its machines. In this

case, the sensitive attribute to be protected is whether the machines

are patched against Spectre [19] and Meltdown [22] attacks.

Our dataset [14] includes 22 different hardware counters (i.e.,

numerical metrics) for a variety of cryptomining and non-mining

applications. Each record in the dataset contains 3-5 measurements

taken at an interval of 2 seconds. The dataset contains two parts:

the unpatched subset was generated by running applications on a

machine vulnerable to Spectre and Meltdown attacks; the patched

subset was generated by running the same applications on the same

machine after the patches have been installed. We generated Lp

and Lup by randomly sampling from the patched and unpatched

subsets respectively. Lp and Lup both contain 50 records from

cryptomining applications and 50 records from non-mining appli-

cations. The sampled time sequences have a maximum length of

48.

Tests Length Moving Average Moving Difference

γ 0 0.2 0 0.2 0 0.2

p-values 1.00 1.00 0.71 0.99 0.67 0.98

Time (s) <0.01 0.04 0.66 15.01 0.53 12.31

Table 5: Correctness and Performance on HPCs.

Tests Length Moving Moving
Average Difference

γ 0 0.2 0 0.2 0 0.2

No Obfuscation 0.89 1.00 <0.01 <0.01 - -

Scaling 0.89 1.00 <0.01 <0.01 - -

PIT 0.89 1.00 <0.01 0.99 - 0.72
Scaling + PIT 0.89 1.00 <0.01 0.99 - 0.81

PIT + Noise 0.89 1.00 0.02 0.92 0.48 0.86

Table 6: Effectiveness of Different Obfuscation on HPCs
Correctness and Performance. We demonstrated that the tests

were correct and they incurred little testing overhead on the HPC

dataset. We randomly divided Lp into two groups G1 and G2. We

performed indistinguishability tests on G1 and G2 with the null

hypothesis that they are γ -log indistinguishable with γ = 0 and

γ = 0.2. We repeated the testing process for 10 times with α = 0.01.

In all the 10 repetitions, the indistinguishability tests were passed

for both γ = 0 and γ = 0.2. Table 5 presents the average p-values
and running time for each test.

Testing-Based Obfuscation. We showed that the obfuscation tech-

niques that were effective on the Spark event logs could not protect

the HPC dataset, but the sensitive information could be effectively

hidden by the noise addition technique we proposed.

We applied three obfuscation techniques to protect the HPC

dataset: scaling, PIT, and noise addition. Table 6 shows the testing

results after each obfuscation technique was applied. We performed

indistinguishability tests with α = 0.01. The values in bold indicate

that the obfuscated logs passed all tests and could be shared. Unlike

the Spark event log dataset, the HPC dataset could not be protected

by scaling because the main source of information leakage is the

distribution, rather than magnitude of the performance counters.

For example, compared to unpatched machines, patched machines

have a larger variation in the number of executed instructions per

second. Moreover, the sensitive attribute in the HPC dataset could

be inferred through the correlations between different performance

counters, so PIT is not sufficient to protect the information leakage.

To hide the correlations that could leak the sensitive attribute,

we added Gaussian noise N(0,σ 2) to each measurements in the

HPC dataset. To ensure that the noise we added have relatively

same magnitude as the original value, we normalized the metrics

prior to noise addition and scaled them back after noise was added.

We gradually increased σ until the moving average test was passed.

With σ = 0.09, the moving average test was passed with p = 0.02.

To reduce false negatives (i.e., incorrectly accept the null hypothe-

sis), we repeated the testing process for 10 times and ensured that

the test was passed in all the repetitions.

Risk and Utility of Obfuscated Logs. We showed that the noise

addition technique was effective in protecting against the attacks

and incurred little utility loss on the HPC dataset.

MLP Attack NN Attack Utility

No Obfuscation 0.60 0.80 0.96

Scaling 0.95 0.93 0.97

Scaling + PIT 0.60 0.58 0.91

PIT + Noise 0.47 0.57 0.90

Table 7: Attack and Utility Analysis on Obfuscated HPCs.

Using the techniques in Section 5, we trained two attack classi-

fiers to predict whether the machines were patched: (i) a multi-layer

perceptron (MLP) model with 100 hidden units and (ii) a nearest

neighbor (NN) classifier. We did not evaluate the length attack

because all the records in the HPC datasets have similar length.

We evaluated the utility of the obfuscated dataset using an MLP

model with 100 hidden units. The model was trained to predict

whether a record was generated by a cryptomining or non-mining

application. Table 7 presents the attack accuracy and utility under

different obfuscation techniques. The attack accuracy conforms

with the test results presented in Table 6, the obfuscation techniques

reduced the maximum attack accuracy from 80% to 57% but still

preserved a 90% accuracy in classifying mining and non-mining

applications.

Analysis on Noise Addition. We showed that PIT could effectively

reduce the amount of noise required for protecting the sensitive in-

formation. Noise addition could mitigate any information leakage

if the standard deviation of the noise (σ) is large enough. How-

ever, adding noise with large σ would incur huge utility loss on

the logs. To minimize the utility loss, we applied other obfusca-

tion techniques such as scaling and PIT prior to noise addition.

Table 8 presents the effectiveness of these techniques in reducing

the amount of required noise to pass the moving average test. By ap-

plying PIT prior to noise addition, we increased the utility accuracy

by around 30%.

7 RELATEDWORK
Differential Privacy. Recently, differential privacy has been ex-

tended to protect against side channel attacks. Xu et al. [50] applied

differential privacy to prevent information leakage through timing

and message size, and Xiao et al. [47] used differential privacy to

mitigate storage side channels in procfs. However neither of these
works discussed privacy in log-sharing. This scenario is different

from side channel attacks in two aspects. First, our framework does

not require modifications of the system and does not incur any

performance overhead on the system. Instead, users could achieve

the protection goal by modifying metrics in the shared log files.

Second, our framework is designed for general-purpose log sharing.

Therefore, we do not make any assumption on the logged metrics

or analysis to be performed on the logs.

Log Anonymization. Prior studies have proposed various meth-

ods to hide user-identifiable information in logs. These studies can

be classified into two categories: log anonymization and encryption.

Log anonymization refers to the process of removing or redacting

user identifiers in system logs. For example, there has been ex-

tensive research on IP anonymization [4, 5, 23, 31, 48, 49], ranging

from truncating all IP addresses to prefix-preserving pseudonymiza-

tion [48, 49]. Similarly, studies on timestamp anonymization has

No Obfuscation Scaling PIT

σmin 0.86 0.89 0.09
Utility 0.62 0.54 0.90

Table 8: Obfuscation Prior to Noise Addition.

shown that it’s possible to convert timestamps into relevant times-

tamps, which hide the exact time of the events but preserve the

orders [32, 45]. On the other hand, some research has studied the

use of encryption mechanisms in log privacy. Encryption meth-

ods, such as searchable encryption, can hide sensitive informa-

tion in logs while allowing the administrator to do certain analy-

sis [30, 35, 44, 46]. However, log anonymization focuses on remov-

ing user identifiers and is not enough to prevent the leakage of all

the sensitive information. In this work, we focus on information

leakage from indirect evidence such as performance metrics.

Randomness Test. Randomness tests are statistical tests that com-

pare and evaluate a sequence to a truly random sequence. Rukhin et

al. [34] have proposed a randomness test suite consisting of 15 dif-

ferent random tests, each of which covering different randomness

statistics. The design of our indistinguishability test suite shares

a similar structure with the randomness test suite. However, to

identify information in logs, we performed a different set of statisti-

cal tests. Additionally, we designed obfuscation methods that help

users to efficiently mitigate the identified risks.

Data Obfuscation. Data obfuscation is amechanism to protect pri-

vacy by adding misleading, false, or ambiguous information [27, 37].

For example, Sweeney [41] proposed the use of generalization and

suppression to hide identifying information in a dataset containing

person-specific records. Bakken et al [3] designed a set of obfusca-

tion primitives and proposed properties to quantify the usefulness

and privacy of the techniques. Some data obfuscation techniques

such as generalization and suppression could be used to obfuscate

logs. In this work, we combineed these techniques with the testing-

based log obfuscation framework to protect sensitive information

in logs.

Cryptographic Indistinguishability Obfuscation. Cryptographic
indistinguishability obfuscation is a cryptographic primitive that

provides a formal notion of program obfuscation. It requires that the

obfuscation of two equivalent circuitsC0 andC1 should be computa-

tionally indistinguishable [15]. This property can be guaranteed by

algebraic hardness assumptions [15] or the security of other cryp-

tographic primitives such as public-key functional encryption [6].

Similar to other program obfuscation techniques, indistinguisha-

bility obfuscation methods are designed to hide information of

a program, and are not applicable to the protection of sensitive

information in logs.

8 CONCLUSION
We have proposed a test-based framework to identify and mitigate

the risk of information leakage in general-purpose log sharing. Our

framework contains a set of statistical tests to identify violations

of the log indistinguishability property and a variety of obfusca-

tion methods such as probability integral transformation and noise

addition. We tested our framework on Spark event logs and logs

generated by a hardware performance counter. The framework

effectively identified risks in information leakage and mitigated the

risks with two obfuscation techniques.

This work was supported in part by NSF CNS 13-30491 and NSF

CNS 14-08944. The views expressed are those of the authors only.

REFERENCES
[1] Apache spark. https://spark.apache.org/.

[2] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and M. Zhang. Cher-

rypick: Adaptively unearthing the best cloud configurations for big data analytics.

In 14th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 17), pages 469–482, 2017.

[3] D. E. Bakken, R. Rarameswaran, D. M. Blough, A. A. Franz, and T. J. Palmer. Data

obfuscation: Anonymity and desensitization of usable data sets. IEEE Security &
Privacy, 2(6):34–41, 2004.

[4] J. Biskup and U. Flegel. Transaction-based pseudonyms in audit data for privacy

respecting intrusion detection. In International Workshop on Recent Advances in
Intrusion Detection, pages 28–48. Springer, 2000.

[5] J. Biskup and U. Flegel. On pseudonymization of audit data for intrusion detection.

In Designing Privacy Enhancing Technologies, pages 161–180. Springer, 2001.
[6] N. Bitansky and V. Vaikuntanathan. Indistinguishability obfuscation from func-

tional encryption. In 2015 IEEE 56th Annual Symposium on Foundations of Com-
puter Science, pages 171–190. IEEE, 2015.

[7] M. Bland. Do baseline p-values follow a uniform distribution in randomised

trials? PloS one, 8(10):e76010, 2013.
[8] M. Chiappetta, E. Savas, and C. Yilmaz. Real time detection of cache-based side-

channel attacks using hardware performance counters. Applied Soft Computing,
49:1162–1174, 2016.

[9] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman, S. Sethumadhavan,

and S. Stolfo. On the feasibility of online malware detection with performance

counters. ACM SIGARCH Computer Architecture News, 41(3):559–570, 2013.
[10] Z. Ding, Y. Wang, G. Wang, D. Zhang, and D. Kifer. Detecting violations of differ-

ential privacy. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 475–489. ACM, 2018.

[11] M. Du and F. Li. Spell: Streaming parsing of system event logs. In 2016 IEEE 16th
International Conference on Data Mining (ICDM), pages 859–864. IEEE, 2016.

[12] C. Dwork. Differential privacy: A survey of results. In International Conference
on Theory and Applications of Models of Computation, pages 1–19. Springer, 2008.

[13] R. A. Fisher. Statistical methods for research workers. Genesis Publishing Pvt Ltd,

2006.

[14] K. Ganju, Q. Wang, W. Yang, C. A. Gunter, and N. Borisov. Property inference

attacks on fully connected neural networks using permutation invariant repre-

sentations. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 619–633. ACM, 2018.

[15] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate

indistinguishability obfuscation and functional encryption for all circuits. In 2013
IEEE 54th Annual Symposium on Foundations of Computer Science, pages 40–49.
IEEE, 2013.

[16] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola. A kernel

two-sample test. Journal of Machine Learning Research, 13(Mar):723–773, 2012.

[17] P. He, J. Zhu, S. He, J. Li, and M. R. Lyu. Towards automated log parsing for large-

scale log data analysis. IEEE Transactions on Dependable and Secure Computing,
15(6):931–944, 2018.

[18] T. Kalibera, L. Bulej, and P. Tuma. Benchmark precision and random initial state.

In Proceedings of the 2005 International Symposium on Performance Evaluation of
Computer and Telecommunication Systems (SPECTS 2005), pages 484–490, 2005.

[19] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,

S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom. Spectre attacks: Exploiting

speculative execution. In 2019 IEEE Symposium on Security and Privacy (SP),
pages 1–19, May 2019.

[20] N. Li, W. Qardaji, D. Su, Y. Wu, and W. Yang. Membership privacy: a unifying

framework for privacy definitions. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security, pages 889–900. ACM, 2013.

[21] D. Lion, A. Chiu, H. Sun, X. Zhuang, N. Grcevski, and D. Yuan. Don’t get caught

in the cold, warm-up your {JVM}: Understand and eliminate {JVM} warm-up

overhead in data-parallel systems. In 12th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 16), pages 383–400, 2016.

[22] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Mangard,

P. Kocher, D. Genkin, et al. Meltdown: Reading kernel memory from user space.

In 27th {USENIX} Security Symposium ({USENIX} Security 18), pages 973–990,
2018.

[23] E. Lundin and E. Jonsson. Privacy vs. intrusion detection analysis. In Recent
Advances in Intrusion Detection, 1999.

[24] N. Mantel. Chi-square tests with one degree of freedom; extensions of the mantel-

haenszel procedure. Journal of the American Statistical Association, 58(303):690–
700, 1963.

[25] A. Maricq, D. Duplyakin, I. Jimenez, C. Maltzahn, R. Stutsman, and R. Ricci.

Taming performance variability. In 13th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 18), pages 409–425, 2018.

[26] C. E. McCulloch and J. M. Neuhaus. Generalized linear mixed models. Encyclope-
dia of biostatistics, 4, 2005.

[27] H. Nissenbaum and F. Brunton. Vernacular resistance to data collection and

analysis: A political theory. First Monday, 16(5), 2011.
[28] K. Ousterhout, C. Canel, S. Ratnasamy, and S. Shenker. Monotasks: Architecting

for performance clarity in data analytics frameworks. In Proceedings of the 26th
Symposium on Operating Systems Principles, pages 184–200. ACM, 2017.

[29] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B.-G. Chun. Making sense

of performance in data analytics frameworks. In 12th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 15), pages 293–307, 2015.

[30] T. Pulls, R. Peeters, and K. Wouters. Distributed privacy-preserving transparency

logging. In Proceedings of the 12th ACM workshop on Workshop on privacy in the
electronic society, pages 83–94. ACM, 2013.

[31] C. Rath. Usable privacy-aware logging for unstructured log entries. InAvailability,
Reliability and Security (ARES), 2016 11th International Conference on, pages 272–
277. IEEE, 2016.

[32] C. Reiss, J. Wilkes, and J. L. Hellerstein. Google cluster-usage traces: format

+ schema. Technical report, Google Inc., Mountain View, CA, USA, Nov. 2011.

Revised 2014-11-17 for version 2.1. Posted at https://github.com/google/cluster-

data.

[33] C. Reiss, J. Wilkes, and J. L. Hellerstein. Obfuscatory obscanturism: making

workload traces of commercially-sensitive systems safe to release. In 2012 IEEE
Network Operations and Management Symposium, pages 1279–1286. IEEE, 2012.

[34] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, and E. Barker. A statistical test suite for

random and pseudorandom number generators for cryptographic applications.

Technical report, Booz-Allen and Hamilton Inc Mclean Va, 2001.

[35] B. Schneier and J. Kelsey. Cryptographic support for secure logs on untrusted

machines. In USENIX Security Symposium, volume 98, pages 53–62, 1998.

[36] S. Sebastio, K. S. Trivedi, and J. Alonso. Characterizing machines lifecycle in

google data centers. Performance Evaluation, 126:39 – 63, 2018.

[37] R. Shokri. Privacy games: Optimal user-centric data obfuscation. Proceedings on
Privacy Enhancing Technologies, 2015(2):299–315, 2015.

[38] B. K. Sriperumbudur, A. Gretton, K. Fukumizu, B. Schölkopf, and G. R. Lanckriet.

Hilbert space embeddings and metrics on probability measures. Journal of
Machine Learning Research, 11(Apr):1517–1561, 2010.

[39] M. A. Stephens. Edf statistics for goodness of fit and some comparisons. Journal
of the American statistical Association, 69(347):730–737, 1974.

[40] Student. The probable error of a mean. Biometrika, pages 1–25, 1908.
[41] L. Sweeney. Achieving k-anonymity privacy protection using generalization and

suppression. International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems, 10(05):571–588, 2002.

[42] R. Tahir, M. Huzaifa, A. Das, M. Ahmad, C. Gunter, F. Zaffar, M. Caesar, and

N. Borisov. Mining on someone else’s dime: Mitigating covert mining operations

in clouds and enterprises. In International Symposium on Research in Attacks,
Intrusions, and Defenses, pages 287–310. Springer, 2017.

[43] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Stoica. Ernest: efficient

performance prediction for large-scale advanced analytics. In 13th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 16), pages
363–378, 2016.

[44] B. R. Waters, D. Balfanz, G. Durfee, and D. K. Smetters. Building an encrypted

and searchable audit log. In NDSS, volume 4, pages 5–6, 2004.

[45] J. Wilkes. More Google cluster data. Google research blog, Nov. 2011. Posted at

http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html.

[46] K. Wouters, K. Simoens, D. Lathouwers, and B. Preneel. Secure and privacy-

friendly logging for egovernment services. In Availability, Reliability and Security,
2008. ARES 08. Third International Conference on, pages 1091–1096. IEEE, 2008.

[47] Q. Xiao, M. K. Reiter, and Y. Zhang. Mitigating storage side channels using

statistical privacymechanisms. In Proceedings of the 22nd ACM SIGSACConference
on Computer and Communications Security, pages 1582–1594. ACM, 2015.

[48] J. Xu, J. Fan, M. Ammar, and S. B. Moon. On the design and performance of

prefix-preserving ip traffic trace anonymization. In Proceedings of the 1st ACM
SIGCOMMWorkshop on Internet Measurement, pages 263–266. ACM, 2001.

[49] J. Xu, J. Fan, M. H. Ammar, and S. B. Moon. Prefix-preserving ip address

anonymization: Measurement-based security evaluation and a new cryptography-

based scheme. In Network Protocols, 2002. Proceedings. 10th IEEE International
Conference on, pages 280–289. IEEE, 2002.

[50] M. Xu, A. Papadimitriou, A. Feldman, and A. Haeberlen. Using differential privacy

to efficiently mitigate side channels in distributed analytics. In Proceedings of the
11th European Workshop on Systems Security, page 4. ACM, 2018.

[51] Y. Yang, Z. Zhang, G. Miklau, M.Winslett, and X. Xiao. Differential privacy in data

publication and analysis. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, pages 601–606. ACM, 2012.

https://spark.apache.org/
https://github.com/google/cluster-data
https://github.com/google/cluster-data
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html

	Abstract
	1 Introduction
	2 Background
	2.1 Differential Privacy
	2.2 Hypothesis Tests

	3 Log Indistinguishability
	3.1 Problem Statement
	3.2 Log Indistinguishability
	3.3 Framework Overview

	4 Indistinguishability Tests
	4.1 A Testing-Based Approach
	4.2 Steps of Indistinguishability Testing
	4.3 Designing Indistinguishability Tests
	4.4 Interpretation of Test Results

	5 Protections with Log Obfuscation
	6 Case Studies
	6.1 Spark Event Log Dataset
	6.2 Hardware Performance Counter Dataset

	7 Related Work
	8 Conclusion
	References

